Перевод: с английского на все языки

со всех языков на английский

it's improved over the years

  • 1 over

    over ['əʊvə(r)]
    au-dessus de1A (a) sur1A (b), 1B (a), 1B (b) par-dessus1A (b), 1A (c) plus de1C (a) au sujet de1D (a) plus2B (b) encore2B (d) fini3
    A.
    (a) (above) au-dessus de;
    a bullet whistled over my head une balle siffla au-dessus de ma tête;
    they live over the shop ils habitent au-dessus du magasin;
    the plane came down over France l'avion s'est écrasé en France
    (b) (on top of, covering) sur, par-dessus;
    put a lace cloth over the table mets une nappe en dentelle sur la table;
    she wore a cardigan over her dress elle portait un gilet par-dessus sa robe;
    she wore a black dress with a red cardigan over it elle avait une robe noire avec un gilet rouge par-dessus;
    I put my hand over my mouth j'ai mis ma main devant ma bouche;
    he had his jacket over his arm il avait sa veste sur le bras;
    with his hat over his eyes le chapeau enfoncé jusqu'aux yeux;
    we painted over the wallpaper nous avons peint par-dessus la tapisserie;
    she was hunched over the wheel elle était penchée sur la roue
    he was watching me over his newspaper il m'observait par-dessus son journal;
    I peered over the edge j'ai jeté un coup d'œil par-dessus le rebord;
    he fell/jumped over the cliff il est tombé/a sauté du haut de la falaise
    to cross over the road traverser la rue;
    they live over the road from me ils habitent en face de chez moi;
    there's a fine view over the valley on a une belle vue sur la vallée;
    the bridge over the river le pont qui enjambe la rivière;
    he ran his eye over the article il a parcouru l'article des yeux;
    she ran her hand over the smooth marble elle passa la main sur le marbre lisse;
    we travelled for days over land and sea nous avons voyagé pendant des jours par terre et par mer;
    a strange look came over her face son visage prit une expression étrange
    the village over the hill le village de l'autre côté de la colline;
    they must be over the border by now ils doivent avoir passé la frontière maintenant
    B.
    to rule over a country régner sur un pays;
    I have no control/influence over them je n'ai aucune autorité/influence sur eux;
    she has some kind of hold over him elle a une certaine emprise sur lui;
    she watched over her children elle surveillait ses enfants
    (b) (indicating position of superiority, importance) sur;
    a victory over the forces of reaction une victoire sur les forces réactionnaires;
    our project takes priority over the others notre projet a priorité sur les autres
    C.
    (a) (with specific figure or amount → more than) plus de;
    it took me well/just over an hour j'ai mis bien plus/un peu plus d'une heure;
    he must be over thirty il doit avoir plus de trente ans;
    children over (the age of) 7 les enfants (âgés) de plus de 7 ans;
    think of a number over 100 pensez à un chiffre supérieur à 100;
    not over 250 grams (in post office) jusqu'à 250 grammes
    his voice rang out over the others sa voix dominait toutes les autres;
    I couldn't hear what she was saying over the music la musique m'empêchait d'entendre ce qu'elle disait
    eight over two huit divisé par deux
    I've got a job over the long vacation je vais travailler pendant les grandes vacances;
    I'll do it over the weekend je le ferai pendant le week-end;
    what are you doing over Easter? qu'est-ce que tu fais pour Pâques?;
    it's improved over the years ça s'est amélioré au cours ou au fil des années;
    over the next few decades au cours des prochaines décennies;
    over a period of several weeks pendant plusieurs semaines;
    we discussed it over a drink/over lunch/over a game of golf nous en avons discuté autour d'un verre/pendant le déjeuner/en faisant une partie de golf
    D.
    (a) (concerning) au sujet de;
    a disagreement over working conditions un conflit portant sur les conditions de travail;
    they're always quarrelling over money ils se disputent sans cesse pour des questions d'argent;
    to laugh over sth rire (à propos) de qch;
    there's a big question mark over his future nous n'avons aucune idée de ce qu'il va devenir
    (b) (by means of, via)
    they were talking over the telephone ils parlaient au téléphone;
    I heard it over the radio je l'ai entendu à la radio
    are you over your bout of flu? est-ce que tu es guéri ou est-ce que tu t'es remis de ta grippe?;
    he's over the shock now il s'en est remis maintenant;
    we'll soon be over the worst le plus dur sera bientôt passé;
    it took her a long time to get over his death elle a mis longtemps à se remettre de sa mort;
    don't worry, you'll be or get over her soon ne t'en fais pas, bientôt tu n'y penseras plus
    A.
    (a) (indicating movement or location, across distance or space)
    an eagle flew over un aigle passa au-dessus de nous;
    she walked over to him and said hello elle s'approcha de lui pour dire bonjour;
    he led me over to the window il m'a conduit à la fenêtre;
    he must have seen us, he's coming over il a dû nous voir, il vient vers nous ou de notre côté;
    pass my cup over, will you tu peux me passer ma tasse?;
    throw it over! (over the wall etc) lance-le par-dessus!; (throw it to me) lance-le moi!;
    she glanced over at me elle jeta un coup d'œil dans ma direction;
    she leaned over to whisper to him elle se pencha pour lui chuchoter quelque chose à l'oreille;
    over in the States aux États-Unis;
    over there là-bas;
    come over here! viens (par) ici!;
    has Colin been over? est-ce que Colin est passé?;
    she drove over to meet us elle est venue nous rejoindre en voiture;
    let's have or invite them over for dinner si on les invitait à dîner?;
    we have guests over from Morocco nous avons des invités qui viennent du Maroc
    she's travelled the whole world over elle a voyagé dans le monde entier;
    people the world over are watching the broadcast live des téléspectateurs du monde entier assistent à cette retransmission en direct
    I fell over je suis tombé (par terre);
    she knocked her glass over elle a renversé son verre;
    he flipped the pancake over il a retourné la crêpe;
    American familiar over easy (egg) cuit sur les deux côtés;
    they rolled over and over in the grass ils se roulaient dans l'herbe;
    and over I went et me voilà par terre
    we just whitewashed it over nous l'avons simplement passé à la chaux;
    the bodies were covered over with blankets les corps étaient recouverts avec des couvertures
    (e) (into the hands of another person, group etc)
    he's gone over to the other side/to the opposition il est passé de l'autre côté/dans l'opposition;
    they handed him over to the authorities ils l'ont remis aux autorités ou entre les mains des autorités;
    Radio & Television and now over to Kirsty Jones in Paris nous passons maintenant l'antenne à Kirsty Jones à Paris;
    over to you (it's your turn) c'est votre tour, c'est à vous;
    Telecommunications over (to you)! à vous!;
    over and out! terminé!
    B.
    (a) (left, remaining)
    there were/I had a few pounds (left) over il restait/il me restait quelques livres;
    you will keep what is (left) over vous garderez l'excédent ou le surplus;
    seven into fifty-two makes seven with three over cinquante-deux divisé par sept égale sept, il reste trois
    (b) (with specific figure or amount → more) plus;
    men of 30 and over les hommes âgés de 30 ans et plus;
    articles costing £100 or over les articles de 100 livres et plus
    read it over carefully lisez-le attentivement;
    do you want to talk the matter over? voulez-vous en discuter?
    (d) (again, more than once) encore;
    American I had to do the whole thing over j'ai dû tout refaire;
    she won the tournament five times over elle a gagné le tournoi à cinq reprises
    fini;
    the party's over la fête est finie;
    the danger is over le danger est passé;
    the war was just over la guerre venait de finir ou de s'achever;
    I'm glad that's over (with)! je suis bien content que ça soit fini!;
    that's over and done with voilà qui est fini et bien fini
    4 noun
    (in cricket) série f de six balles
    Typography (extra paper) main f de passe, simple passe f; (extra books) exemplaires mpl de passe
    en plus de;
    over and above what we've already paid en plus de ce que nous avons déjà payé;
    and over and above that, he was banned from driving for life en plus, on lui a retiré son permis (de conduire) à vie
    I've told you over and over (again) je te l'ai répété je ne sais combien de fois;
    he did it over and over (again) until… il a recommencé des dizaines de fois jusqu'à ce que…
    They think it's all over (...it is now) Ces mots, précédés de la phrase some people are on the pitch... ("il y a quelques personnes sur le terrain"), furent prononcés par Kenneth Wolstenholme, commentateur sportif de la BBC, au moment où Geoff Hurst marqua un dernier but pour l'Angleterre dans les dernières secondes de la finale de la Coupe du monde de football de 1966, qui vit l'Angleterre l'emporter face à la République fédérale d'Allemagne. Aujourd'hui on utilise cette expression ("ils croient que c'est terminé,... maintenant, c'est terminé") en anglais britannique lorsque quelqu'un s'imagine à tort qu'une chose est terminée, ou bien au moment même où cette chose s'achève.

    Un panorama unique de l'anglais et du français > over

  • 2 Séguin, Louis

    [br]
    b. 1869
    d. 1918
    [br]
    French co-designer, with his brother Laurent Séguin (b. 1883 Rhône, France; d. 1944), of the extremely successful Gnome rotary engines.
    [br]
    Most early aero-engines were adaptations of automobile engines, but Louis Séguin and his brother Laurent set out to produce a genuine aero-engine. They decided to build a "rotary" engine in which the crankshaft remained stationary and the cylinders rotated: the propeller was attached to the cylinders. The idea was not new, for rotary engines had been proposed by engineers from James Watt to Samuel P. Langley, rival of the Wright brothers. (An engine with stationary cylinders and a rotating crankshaftplus-propeller is classed as a "radial".) Louis Séguin formed the Société des Moteurs Gnome in 1906 to build stationary industrial engines. Laurent joined him to develop a lightweight engine specifically for aeronautical use. They built a fivecylinder air-cooled radial engine in 1908 and then a prototype seven-cylinder rotary engine. Later in the year the Gnome Oméga rotary, developing 50 hp (37 kW), was produced. This was test-flown in a Voisin biplane during June 1909. The Gnome was much lighter than its conventional rivals and surprisingly reliable in view of the technical problems of supplying rotating cylinders with the petrol-air mixture and a spark to ignite it. It was an instant success.
    Gnomes were mass-produced for use during the First World War. Both sides built and flew rotary engines, which were improved over the years until, by 1917, their size had grown to such an extent that a further increase was not practicable. The gyroscopic effects of a large rotating engine became a serious handicap to manoeuvrability, and the technical problems inherent in a rotary engine were accentuated.
    [br]
    Bibliography
    1912, L'Aérophile 20(4) (Louis Séguin's description of the Gnome).
    Further Reading
    C.F.Taylor, 1971, "Aircraft Propulsion", Smithsonian Annals of Flight 1(4) (an account of the evolution of aircraft piston engines).
    A.Nahum, 1987, the Rotary Aero-Engine, London.
    JDS

    Biographical history of technology > Séguin, Louis

  • 3 MacGregor, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1873 Hebburn-on-Tyne, England
    d. 4 October 1956 Whitley Bay, England
    [br]
    English naval architect who, working with others, significantly improved the safety of life at sea.
    [br]
    On leaving school in 1894, MacGregor was apprenticed to a famous local shipyard, the Palmers Shipbuilding and Iron Company of Jarrow-on-Tyne. After four years he was entered for the annual examination of the Worshipful Company of Shipwrights, coming out top and being nominated Queen's Prizeman. Shortly thereafter he moved around shipyards to gain experience, working in Glasgow, Hull, Newcastle and then Dunkirk. His mastery of French enabled him to obtain in 1906 the senior position of Chief Draughtsman at an Antwerp shipyard, where he remained until 1914. On his return to Britain, he took charge of the small yard of Dibbles in Southampton and commenced a period of great personal development and productivity. His fertile mind enabled him to register no fewer than ten patents in the years 1919 to 1923.
    In 1924 he started out on his own as a naval architect, specializing in the coal trade of the North Sea. At that time, colliers had wooden hatch covers, which despite every caution could be smashed by heavy seas, and which in time of war added little to hull integrity after a torpedo strike. The International Loadline Committee of 1932 noted that 13 per cent of ship losses were through hatch failures. In 1927, designs for selftrimming colliers were developed, as well as designs for steel hatch covers. In 1928 the first patents were under way and the business was known for some years as MacGregor and King. During this period, steel hatch covers were fitted to 105 ships.
    In 1937 MacGregor invited his brother Joseph (c. 1883–1967) to join him. Joseph had wide experience in ship repairs and had worked for many years as General Manager of the Prince of Wales Dry Docks in Swansea, a port noted for its coal exports. By 1939 they were operating from Whitley Bay with the name that was to become world famous: MacGregor and Company (Naval Architects) Ltd. The new company worked in association with the shipyards of Austin's of Sunderland and Burntisland of Fife, which were then developing the "flatiron" colliers for the up-river London coal trade. The MacGregor business gained a great boost when the massive coastal fleet of William Cory \& Son was fitted with steel hatches.
    In 1945 the brothers appointed Henri Kummerman (b. 1908, Vienna; d. 1984, Geneva) as their sales agent in Europe. Over the years, Kummerman effected greater control on the MacGregor business and, through his astute business dealings and his well-organized sales drives worldwide, welded together an international company in hatch covers, cargo handling and associated work. Before his death, Robert MacGregor was to see mastery of the design of single-pull steel hatch covers and to witness the acceptance of MacGregor hatch covers worldwide. Most important of all, he had contributed to great increases in the safety and the quality of life at sea.
    [br]
    Further Reading
    L.C.Burrill, 1931, "Seaworthiness of collier types", Transactions of the Institution of Naval Architechts.
    S.Sivewright, 1989, One Man's Mission-20,000 Ships, London: Lloyd's of London Press.
    FMW

    Biographical history of technology > MacGregor, Robert

  • 4 Senefelder, Alois

    SUBJECT AREA: Paper and printing
    [br]
    b. 6 November 1771 Prague, Bohemia (now Czech Republic)
    d. 26 February 1834 Munich, Germany
    [br]
    German inventor of lithography.
    [br]
    Soon after his birth, Senefelder's family moved to Mannheim, where his father, an actor, had obtained a position in the state theatre. He was educated there, until he gained a scholarship to the university of Ingolstadt. The young Senefelder wanted to follow his father on to the stage, but the latter insisted that he study law. He nevertheless found time to write short pieces for the theatre. One of these, when he was 18 years old, was an encouraging success. When his father died in 1791, he gave up his studies and took to a new life as poet and actor. However, the wandering life of a repertory actor palled after two years and he settled for the more comfortable pursuit of playwriting. He had some of his work printed, which acquainted him with the art of printing, but he fell out with his bookseller. He therefore resolved to carry out his own printing, but he could not afford the equipment of a conventional letterpress printer. He began to explore other ways of printing and so set out on the path that was to lead to an entirely new method.
    He tried writing in reverse on a copper plate with some acid-resisting material and etching the plate, to leave a relief image that could then be inked and printed. He knew that oily substances would resist acid, but it required many experiments to arrive at a composition of wax, soap and charcoal dust dissolved in rainwater. The plates wore down with repeated polishing, so he substituted stone plates. He continued to etch them and managed to make good prints with them, but he went on to make the surprising discovery that etching was unnecessary. If the image to be printed was made with the oily composition and the stone moistened, he found that only the oily image received the ink while the moistened part rejected it. The printing surface was neither raised (as in letterpress printing) nor incised (as in intaglio printing): Senefelder had discovered the third method of printing.
    He arrived at a workable process over the years 1796 to 1799, and in 1800 he was granted an English patent. In the same year, lithography (or "writing on stone") was introduced into France and Senefelder himself took it to England, but it was some time before it became widespread; it was taken up by artists especially for high-quality printing of art works. Meanwhile, Senefelder improved his techniques, finding that other materials, even paper, could be used in place of stone. In fact, zinc plates were widely used from the 1820s, but the name "lithography" stuck. Although he won world renown and was honoured by most of the crowned heads of Europe, he never became rich because he dissipated his profits through restless experimenting.
    With the later application of the offset principle, initiated by Barclay, lithography has become the most widely used method of printing.
    [br]
    Bibliography
    1911, Alois Senefelder, Inventor of Lithography, trans. J.W.Muller, New York: Fuchs \& Line (Senefelder's autobiography).
    Further Reading
    W.Weber, 1981, Alois Senefelder, Erfinder der Lithographie, Frankfurt-am-Main: Polygraph Verlag.
    M.Tyman, 1970, Lithography 1800–1950, London: Oxford University Press (describes the invention and its development; with biographical details).
    LRD

    Biographical history of technology > Senefelder, Alois

  • 5 Catholic church

       The Catholic Church and the Catholic religion together represent the oldest and most enduring of all Portuguese institutions. Because its origins as an institution go back at least to the middle of the third century, if not earlier, the Christian and later the Catholic Church is much older than any other Portuguese institution or major cultural influence, including the monarchy (lasting 770 years) or Islam (540 years). Indeed, it is older than Portugal (869 years) itself. The Church, despite its changing doctrine and form, dates to the period when Roman Lusitania was Christianized.
       In its earlier period, the Church played an important role in the creation of an independent Portuguese monarchy, as well as in the colonization and settlement of various regions of the shifting Christian-Muslim frontier as it moved south. Until the rise of absolutist monarchy and central government, the Church dominated all public and private life and provided the only education available, along with the only hospitals and charity institutions. During the Middle Ages and the early stage of the overseas empire, the Church accumulated a great deal of wealth. One historian suggests that, by 1700, one-third of the land in Portugal was owned by the Church. Besides land, Catholic institutions possessed a large number of chapels, churches and cathedrals, capital, and other property.
       Extensive periods of Portuguese history witnessed either conflict or cooperation between the Church as the monarchy increasingly sought to gain direct control of the realm. The monarchy challenged the great power and wealth of the Church, especially after the acquisition of the first overseas empire (1415-1580). When King João III requested the pope to allow Portugal to establish the Inquisition (Holy Office) in the country and the request was finally granted in 1531, royal power, more than religion was the chief concern. The Inquisition acted as a judicial arm of the Catholic Church in order to root out heresies, primarily Judaism and Islam, and later Protestantism. But the Inquisition became an instrument used by the crown to strengthen its power and jurisdiction.
       The Church's power and prestige in governance came under direct attack for the first time under the Marquis of Pombal (1750-77) when, as the king's prime minister, he placed regalism above the Church's interests. In 1759, the Jesuits were expelled from Portugal, although they were allowed to return after Pombal left office. Pombal also harnessed the Inquisition and put in place other anticlerical measures. With the rise of liberalism and the efforts to secularize Portugal after 1820, considerable Church-state conflict occurred. The new liberal state weakened the power and position of the Church in various ways: in 1834, all religious orders were suppressed and their property confiscated both in Portugal and in the empire and, in the 1830s and 1840s, agrarian reform programs confiscated and sold large portions of Church lands. By the 1850s, Church-state relations had improved, various religious orders were allowed to return, and the Church's influence was largely restored. By the late 19th century, Church and state were closely allied again. Church roles in all levels of education were pervasive, and there was a popular Catholic revival under way.
       With the rise of republicanism and the early years of the First Republic, especially from 1910 to 1917, Church-state relations reached a new low. A major tenet of republicanism was anticlericalism and the belief that the Church was as much to blame as the monarchy for the backwardness of Portuguese society. The provisional republican government's 1911 Law of Separation decreed the secularization of public life on a scale unknown in Portugal. Among the new measures that Catholics and the Church opposed were legalization of divorce, appropriation of all Church property by the state, abolition of religious oaths for various posts, suppression of the theology school at Coimbra University, abolition of saints' days as public holidays, abolition of nunneries and expulsion of the Jesuits, closing of seminaries, secularization of all public education, and banning of religious courses in schools.
       After considerable civil strife over the religious question under the republic, President Sidónio Pais restored normal relations with the Holy See and made concessions to the Portuguese Church. Encouraged by the apparitions at Fátima between May and October 1917, which caused a great sensation among the rural people, a strong Catholic reaction to anticlericalism ensued. Backed by various new Catholic organizations such as the "Catholic Youth" and the Academic Center of Christian Democracy (CADC), the Catholic revival influenced government and politics under the Estado Novo. Prime Minister Antônio de Oliveira Salazar was not only a devout Catholic and member of the CADC, but his formative years included nine years in the Viseu Catholic Seminary preparing to be a priest. Under the Estado Novo, Church-state relations greatly improved, and Catholic interests were protected. On the other hand, Salazar's no-risk statism never went so far as to restore to the Church all that had been lost in the 1911 Law of Separation. Most Church property was never returned from state ownership and, while the Church played an important role in public education to 1974, it never recovered the influence in education it had enjoyed before 1911.
       Today, the majority of Portuguese proclaim themselves Catholic, and the enduring nature of the Church as an institution seems apparent everywhere in the country. But there is no longer a monolithic Catholic faith; there is growing diversity of religious choice in the population, which includes an increasing number of Protestant Portuguese as well as a small but growing number of Muslims from the former Portuguese empire. The Muslim community of greater Lisbon erected a Mosque which, ironically, is located near the Spanish Embassy. In the 1990s, Portugal's Catholic Church as an institution appeared to be experiencing a revival of influence. While Church attendance remained low, several Church institutions retained an importance in society that went beyond the walls of the thousands of churches: a popular, flourishing Catholic University; Radio Re-nascenca, the country's most listened to radio station; and a new private television channel owned by the Church. At an international conference in Lisbon in September 2000, the Cardinal Patriarch of Portugal, Dom José Policarpo, formally apologized to the Jewish community of Portugal for the actions of the Inquisition. At the deliberately selected location, the place where that religious institution once held its hearings and trials, Dom Policarpo read a declaration of Catholic guilt and repentance and symbolically embraced three rabbis, apologizing for acts of violence, pressures to convert, suspicions, and denunciation.

    Historical dictionary of Portugal > Catholic church

  • 6 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 7 near cash

    !
    гос. фин. The resource budget contains a separate control total for “near cash” expenditure, that is expenditure such as pay and current grants which impacts directly on the measure of the golden rule.
    This paper provides background information on the framework for the planning and control of public expenditure in the UK which has been operated since the 1998 Comprehensive Spending Review (CSR). It sets out the different classifications of spending for budgeting purposes and why these distinctions have been adopted. It discusses how the public expenditure framework is designed to ensure both sound public finances and an outcome-focused approach to public expenditure.
    The UK's public spending framework is based on several key principles:
    "
    consistency with a long-term, prudent and transparent regime for managing the public finances as a whole;
    " "
    the judgement of success by policy outcomes rather than resource inputs;
    " "
    strong incentives for departments and their partners in service delivery to plan over several years and plan together where appropriate so as to deliver better public services with greater cost effectiveness; and
    "
    the proper costing and management of capital assets to provide the right incentives for public investment.
    The Government sets policy to meet two firm fiscal rules:
    "
    the Golden Rule states that over the economic cycle, the Government will borrow only to invest and not to fund current spending; and
    "
    the Sustainable Investment Rule states that net public debt as a proportion of GDP will be held over the economic cycle at a stable and prudent level. Other things being equal, net debt will be maintained below 40 per cent of GDP over the economic cycle.
    Achievement of the fiscal rules is assessed by reference to the national accounts, which are produced by the Office for National Statistics, acting as an independent agency. The Government sets its spending envelope to comply with these fiscal rules.
    Departmental Expenditure Limits ( DEL) and Annually Managed Expenditure (AME)
    "
    Departmental Expenditure Limit ( DEL) spending, which is planned and controlled on a three year basis in Spending Reviews; and
    "
    Annually Managed Expenditure ( AME), which is expenditure which cannot reasonably be subject to firm, multi-year limits in the same way as DEL. AME includes social security benefits, local authority self-financed expenditure, debt interest, and payments to EU institutions.
    More information about DEL and AME is set out below.
    In Spending Reviews, firm DEL plans are set for departments for three years. To ensure consistency with the Government's fiscal rules departments are set separate resource (current) and capital budgets. The resource budget contains a separate control total for “near cash” expenditure, that is expenditure such as pay and current grants which impacts directly on the measure of the golden rule.
    To encourage departments to plan over the medium term departments may carry forward unspent DEL provision from one year into the next and, subject to the normal tests for tautness and realism of plans, may be drawn down in future years. This end-year flexibility also removes any incentive for departments to use up their provision as the year end approaches with less regard to value for money. For the full benefits of this flexibility and of three year plans to feed through into improved public service delivery, end-year flexibility and three year budgets should be cascaded from departments to executive agencies and other budget holders.
    Three year budgets and end-year flexibility give those managing public services the stability to plan their operations on a sensible time scale. Further, the system means that departments cannot seek to bid up funds each year (before 1997, three year plans were set and reviewed in annual Public Expenditure Surveys). So the credibility of medium-term plans has been enhanced at both central and departmental level.
    Departments have certainty over the budgetary allocation over the medium term and these multi-year DEL plans are strictly enforced. Departments are expected to prioritise competing pressures and fund these within their overall annual limits, as set in Spending Reviews. So the DEL system provides a strong incentive to control costs and maximise value for money.
    There is a small centrally held DEL Reserve. Support from the Reserve is available only for genuinely unforeseeable contingencies which departments cannot be expected to manage within their DEL.
    AME typically consists of programmes which are large, volatile and demand-led, and which therefore cannot reasonably be subject to firm multi-year limits. The biggest single element is social security spending. Other items include tax credits, Local Authority Self Financed Expenditure, Scottish Executive spending financed by non-domestic rates, and spending financed from the proceeds of the National Lottery.
    AME is reviewed twice a year as part of the Budget and Pre-Budget Report process reflecting the close integration of the tax and benefit system, which was enhanced by the introduction of tax credits.
    AME is not subject to the same three year expenditure limits as DEL, but is still part of the overall envelope for public expenditure. Affordability is taken into account when policy decisions affecting AME are made. The Government has committed itself not to take policy measures which are likely to have the effect of increasing social security or other elements of AME without taking steps to ensure that the effects of those decisions can be accommodated prudently within the Government's fiscal rules.
    Given an overall envelope for public spending, forecasts of AME affect the level of resources available for DEL spending. Cautious estimates and the AME margin are built in to these AME forecasts and reduce the risk of overspending on AME.
    Together, DEL plus AME sum to Total Managed Expenditure (TME). TME is a measure drawn from national accounts. It represents the current and capital spending of the public sector. The public sector is made up of central government, local government and public corporations.
    Resource and Capital Budgets are set in terms of accruals information. Accruals information measures resources as they are consumed rather than when the cash is paid. So for example the Resource Budget includes a charge for depreciation, a measure of the consumption or wearing out of capital assets.
    "
    Non cash charges in budgets do not impact directly on the fiscal framework. That may be because the national accounts use a different way of measuring the same thing, for example in the case of the depreciation of departmental assets. Or it may be that the national accounts measure something different: for example, resource budgets include a cost of capital charge reflecting the opportunity cost of holding capital; the national accounts include debt interest.
    "
    Within the Resource Budget DEL, departments have separate controls on:
    "
    Near cash spending, the sub set of Resource Budgets which impacts directly on the Golden Rule; and
    "
    The amount of their Resource Budget DEL that departments may spend on running themselves (e.g. paying most civil servants’ salaries) is limited by Administration Budgets, which are set in Spending Reviews. Administration Budgets are used to ensure that as much money as practicable is available for front line services and programmes. These budgets also help to drive efficiency improvements in departments’ own activities. Administration Budgets exclude the costs of frontline services delivered directly by departments.
    The Budget preceding a Spending Review sets an overall envelope for public spending that is consistent with the fiscal rules for the period covered by the Spending Review. In the Spending Review, the Budget AME forecast for year one of the Spending Review period is updated, and AME forecasts are made for the later years of the Spending Review period.
    The 1998 Comprehensive Spending Review ( CSR), which was published in July 1998, was a comprehensive review of departmental aims and objectives alongside a zero-based analysis of each spending programme to determine the best way of delivering the Government's objectives. The 1998 CSR allocated substantial additional resources to the Government's key priorities, particularly education and health, for the three year period from 1999-2000 to 2001-02.
    Delivering better public services does not just depend on how much money the Government spends, but also on how well it spends it. Therefore the 1998 CSR introduced Public Service Agreements (PSAs). Each major government department was given its own PSA setting out clear targets for achievements in terms of public service improvements.
    The 1998 CSR also introduced the DEL/ AME framework for the control of public spending, and made other framework changes. Building on the investment and reforms delivered by the 1998 CSR, successive spending reviews in 2000, 2002 and 2004 have:
    "
    provided significant increase in resources for the Government’s priorities, in particular health and education, and cross-cutting themes such as raising productivity; extending opportunity; and building strong and secure communities;
    " "
    enabled the Government significantly to increase investment in public assets and address the legacy of under investment from past decades. Departmental Investment Strategies were introduced in SR2000. As a result there has been a steady increase in public sector net investment from less than ¾ of a per cent of GDP in 1997-98 to 2¼ per cent of GDP in 2005-06, providing better infrastructure across public services;
    " "
    introduced further refinements to the performance management framework. PSA targets have been reduced in number over successive spending reviews from around 300 to 110 to give greater focus to the Government’s highest priorities. The targets have become increasingly outcome-focused to deliver further improvements in key areas of public service delivery across Government. They have also been refined in line with the conclusions of the Devolving Decision Making Review to provide a framework which encourages greater devolution and local flexibility. Technical Notes were introduced in SR2000 explaining how performance against each PSA target will be measured; and
    "
    not only allocated near cash spending to departments, but also – since SR2002 - set Resource DEL plans for non cash spending.
    To identify what further investments and reforms are needed to equip the UK for the global challenges of the decade ahead, on 19 July 2005 the Chief Secretary to the Treasury announced that the Government intends to launch a second Comprehensive Spending Review (CSR) reporting in 2007.
    A decade on from the first CSR, the 2007 CSR will represent a long-term and fundamental review of government expenditure. It will cover departmental allocations for 2008-09, 2009-10 and 2010 11. Allocations for 2007-08 will be held to the agreed figures already announced by the 2004 Spending Review. To provide a rigorous analytical framework for these departmental allocations, the Government will be taking forward a programme of preparatory work over 2006 involving:
    "
    an assessment of what the sustained increases in spending and reforms to public service delivery have achieved since the first CSR. The assessment will inform the setting of new objectives for the decade ahead;
    " "
    an examination of the key long-term trends and challenges that will shape the next decade – including demographic and socio-economic change, globalisation, climate and environmental change, global insecurity and technological change – together with an assessment of how public services will need to respond;
    " "
    to release the resources needed to address these challenges, and to continue to secure maximum value for money from public spending over the CSR period, a set of zero-based reviews of departments’ baseline expenditure to assess its effectiveness in delivering the Government’s long-term objectives; together with
    "
    further development of the efficiency programme, building on the cross cutting areas identified in the Gershon Review, to embed and extend ongoing efficiency savings into departmental expenditure planning.
    The 2007 CSR also offers the opportunity to continue to refine the PSA framework so that it drives effective delivery and the attainment of ambitious national standards.
    Public Service Agreements (PSAs) were introduced in the 1998 CSR. They set out agreed targets detailing the outputs and outcomes departments are expected to deliver with the resources allocated to them. The new spending regime places a strong emphasis on outcome targets, for example in providing for better health and higher educational standards or service standards. The introduction in SR2004 of PSA ‘standards’ will ensure that high standards in priority areas are maintained.
    The Government monitors progress against PSA targets, and departments report in detail twice a year in their annual Departmental Reports (published in spring) and in their autumn performance reports. These reports provide Parliament and the public with regular updates on departments’ performance against their targets.
    Technical Notes explain how performance against each PSA target will be measured.
    To make the most of both new investment and existing assets, there needs to be a coherent long term strategy against which investment decisions are taken. Departmental Investment Strategies (DIS) set out each department's plans to deliver the scale and quality of capital stock needed to underpin its objectives. The DIS includes information about the department's existing capital stock and future plans for that stock, as well as plans for new investment. It also sets out the systems that the department has in place to ensure that it delivers its capital programmes effectively.
    This document was updated on 19 December 2005.
    Near-cash resource expenditure that has a related cash implication, even though the timing of the cash payment may be slightly different. For example, expenditure on gas or electricity supply is incurred as the fuel is used, though the cash payment might be made in arrears on aquarterly basis. Other examples of near-cash expenditure are: pay, rental.Net cash requirement the upper limit agreed by Parliament on the cash which a department may draw from theConsolidated Fund to finance the expenditure within the ambit of its Request forResources. It is equal to the agreed amount of net resources and net capital less non-cashitems and working capital.Non-cash cost costs where there is no cash transaction but which are included in a body’s accounts (or taken into account in charging for a service) to establish the true cost of all the resourcesused.Non-departmental a body which has a role in the processes of government, but is not a government public body, NDPBdepartment or part of one. NDPBs accordingly operate at arm’s length from governmentMinisters.Notional cost of a cost which is taken into account in setting fees and charges to improve comparability with insuranceprivate sector service providers.The charge takes account of the fact that public bodies donot generally pay an insurance premium to a commercial insurer.the independent body responsible for collecting and publishing official statistics about theUK’s society and economy. (At the time of going to print legislation was progressing tochange this body to the Statistics Board).Office of Government an office of the Treasury, with a status similar to that of an agency, which aims to maximise Commerce, OGCthe government’s purchasing power for routine items and combine professional expertiseto bear on capital projects.Office of the the government department responsible for discharging the Paymaster General’s statutoryPaymaster General,responsibilities to hold accounts and make payments for government departments and OPGother public bodies.Orange bookthe informal title for Management of Risks: Principles and Concepts, which is published by theTreasury for the guidance of public sector bodies.Office for NationalStatistics, ONS60Managing Public Money
    ————————————————————————————————————————
    "
    GLOSSARYOverdraftan account with a negative balance.Parliament’s formal agreement to authorise an activity or expenditure.Prerogative powerspowers exercisable under the Royal Prerogative, ie powers which are unique to the Crown,as contrasted with common-law powers which may be available to the Crown on the samebasis as to natural persons.Primary legislationActs which have been passed by the Westminster Parliament and, where they haveappropriate powers, the Scottish Parliament and the Northern Ireland Assembly. Begin asBills until they have received Royal Assent.arrangements under which a public sector organisation contracts with a private sectorentity to construct a facility and provide associated services of a specified quality over asustained period. See annex 7.5.Proprietythe principle that patterns of resource consumption should respect Parliament’s intentions,conventions and control procedures, including any laid down by the PAC. See box 2.4.Public Accountssee Committee of Public Accounts.CommitteePublic corporationa trading body controlled by central government, local authority or other publiccorporation that has substantial day to day operating independence. See section 7.8.Public Dividend finance provided by government to public sector bodies as an equity stake; an alternative to Capital, PDCloan finance.Public Service sets out what the public can expect the government to deliver with its resources. EveryAgreement, PSAlarge government department has PSA(s) which specify deliverables as targets or aimsrelated to objectives.a structured arrangement between a public sector and a private sector organisation tosecure an outcome delivering good value for money for the public sector. It is classified tothe public or private sector according to which has more control.Rate of returnthe financial remuneration delivered by a particular project or enterprise, expressed as apercentage of the net assets employed.Regularitythe principle that resource consumption should accord with the relevant legislation, therelevant delegated authority and this document. See box 2.4.Request for the functional level into which departmental Estimates may be split. RfRs contain a number Resources, RfRof functions being carried out by the department in pursuit of one or more of thatdepartment’s objectives.Resource accountan accruals account produced in line with the Financial Reporting Manual (FReM).Resource accountingthe system under which budgets, Estimates and accounts are constructed in a similar wayto commercial audited accounts, so that both plans and records of expenditure allow in fullfor the goods and services which are to be, or have been, consumed – ie not just the cashexpended.Resource budgetthe means by which the government plans and controls the expenditure of resources tomeet its objectives.Restitutiona legal concept which allows money and property to be returned to its rightful owner. Ittypically operates where another person can be said to have been unjustly enriched byreceiving such monies.Return on capital the ratio of profit to capital employed of an accounting entity during an identified period.employed, ROCEVarious measures of profit and of capital employed may be used in calculating the ratio.Public Privatepartnership, PPPPrivate Finance Initiative, PFIParliamentaryauthority61Managing Public Money
    "
    ————————————————————————————————————————
    GLOSSARYRoyal charterthe document setting out the powers and constitution of a corporation established underprerogative power of the monarch acting on Privy Council advice.Second readingthe second formal time that a House of Parliament may debate a bill, although in practicethe first substantive debate on its content. If successful, it is deemed to denoteParliamentary approval of the principle of the proposed legislation.Secondary legislationlaws, including orders and regulations, which are made using powers in primary legislation.Normally used to set out technical and administrative provision in greater detail thanprimary legislation, they are subject to a less intense level of scrutiny in Parliament.European legislation is,however,often implemented in secondary legislation using powers inthe European Communities Act 1972.Service-level agreement between parties, setting out in detail the level of service to be performed.agreementWhere agreements are between central government bodies, they are not legally a contractbut have a similar function.Shareholder Executive a body created to improve the government’s performance as a shareholder in businesses.Spending reviewsets out the key improvements in public services that the public can expect over a givenperiod. It includes a thorough review of departmental aims and objectives to find the bestway of delivering the government’s objectives, and sets out the spending plans for the givenperiod.State aidstate support for a domestic body or company which could distort EU competition and sois not usually allowed. See annex 4.9.Statement of Excessa formal statement detailing departments’ overspends prepared by the Comptroller andAuditor General as a result of undertaking annual audits.Statement on Internal an annual statement that Accounting Officers are required to make as part of the accounts Control, SICon a range of risk and control issues.Subheadindividual elements of departmental expenditure identifiable in Estimates as single cells, forexample cell A1 being administration costs within a particular line of departmental spending.Supplyresources voted by Parliament in response to Estimates, for expenditure by governmentdepartments.Supply Estimatesa statement of the resources the government needs in the coming financial year, and forwhat purpose(s), by which Parliamentary authority is sought for the planned level ofexpenditure and income.Target rate of returnthe rate of return required of a project or enterprise over a given period, usually at least a year.Third sectorprivate sector bodies which do not act commercially,including charities,social and voluntaryorganisations and other not-for-profit collectives. See annex 7.7.Total Managed a Treasury budgeting term which covers all current and capital spending carried out by the Expenditure,TMEpublic sector (ie not just by central departments).Trading fundan organisation (either within a government department or forming one) which is largely orwholly financed from commercial revenue generated by its activities. Its Estimate shows itsnet impact, allowing its income from receipts to be devoted entirely to its business.Treasury Minutea formal administrative document drawn up by the Treasury, which may serve a wide varietyof purposes including seeking Parliamentary approval for the use of receipts asappropriations in aid, a remission of some or all of the principal of voted loans, andresponding on behalf of the government to reports by the Public Accounts Committee(PAC).62Managing Public Money
    ————————————————————————————————————————
    GLOSSARY63Managing Public MoneyValue for moneythe process under which organisation’s procurement, projects and processes aresystematically evaluated and assessed to provide confidence about suitability, effectiveness,prudence,quality,value and avoidance of error and other waste,judged for the public sectoras a whole.Virementthe process through which funds are moved between subheads such that additionalexpenditure on one is met by savings on one or more others.Votethe process by which Parliament approves funds in response to supply Estimates.Voted expenditureprovision for expenditure that has been authorised by Parliament. Parliament ‘votes’authority for public expenditure through the Supply Estimates process. Most expenditureby central government departments is authorised in this way.Wider market activity activities undertaken by central government organisations outside their statutory duties,using spare capacity and aimed at generating a commercial profit. See annex 7.6.Windfallmonies received by a department which were not anticipated in the spending review.
    ————————————————————————————————————————

    Англо-русский экономический словарь > near cash

  • 8 Porter, Charles Talbot

    [br]
    b. 18 January 1826 Auburn, New York, USA
    d. 1910 USA
    [br]
    American inventor of a stone dressing machine, an improved centrifugal governor and a high-speed steam engine.
    [br]
    Porter graduated from Hamilton College, New York, in 1845, read law in his father's office, and in the autumn of 1847 was admitted to the Bar. He practised for six or seven years in Rochester, New York, and then in New York City. He was drawn into engineering when aged about 30, first through a client who claimed to have invented a revolutionary type of engine and offered Porter the rights to it as payment of a debt. Having lent more money, Porter saw neither the man nor the engine again. Porter followed this with a similar experience over a patent for a stone dressing machine, except this time the machine was built. It proved to be a failure, but Porter set about redesigning it and found that it was vastly improved when it ran faster. His improved machine went into production. It was while trying to get the steam engine that drove the stone dressing machine to run more smoothly that he made a discovery that formed the basis for his subsequent work.
    Porter took the ordinary Watt centrifugal governor and increased the speed by a factor of about ten; although he had to reduce the size of the weights, he gained a motion that was powerful. To make the device sufficiently responsive at the right speed, he balanced the centrifugal forces by a counterweight. This prevented the weights flying outwards until the optimum speed was reached, so that the steam valves remained fully open until that point and then the weights reacted more quickly to variations in speed. He took out a patent in 1858, and its importance was quickly recognized. At first he manufactured and sold the governors himself in a specially equipped factory, because this was the only way he felt he could get sufficient accuracy to ensure a perfect action. For marine use, the counterweight was replaced by a spring.
    Higher speed had brought the advantage of smoother running and so he thought that the same principles could be applied to the steam engine itself, but it was to take extensive design modifications over several years before his vision was realized. In the winter of 1860–1, J.F. Allen met Porter and sketched out his idea of a new type of steam inlet valve. Porter saw the potential of this for his high-speed engine and Allen took out patents for it in 1862. The valves were driven by a new valve gear designed by Pius Fink. Porter decided to display his engine at the International Exhibition in London in 1862, but it had to be assembled on site because the parts were finished in America only just in time to be shipped to meet the deadline. Running at 150 rpm, the engine caused a sensation, but as it was non-condensing there were few orders. Porter added condensing apparatus and, after the failure of Ormerod Grierson \& Co., entered into an agreement with Joseph Whitworth to build the engines. Four were exhibited at the 1867 Paris Exposition Universelle, but Whitworth and Porter fell out and in 1868 Porter returned to America.
    Porter established another factory to build his engine in America, but he ran into all sorts of difficulties, both mechanical and financial. Some engines were built, and serious production was started c. 1874, but again there were further problems and Porter had to leave his firm. High-speed engines based on his designs continued to be made until after 1907 by the Southwark Foundry and Machine Company, Philadelphia, so Porter's ideas were proved viable and led to many other high-speed designs.
    [br]
    Bibliography
    1908, Engineering Reminiscences, New York: J. Wiley \& Sons; reprinted 1985, Bradley, Ill.: Lindsay (autobiography; the main source of information about his life).
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his governor and steam engine).
    O.Mayr, 1974, "Yankee practice and engineering theory; Charles T.Porter and the dynamics of the high-speed engine", Technology and Culture 16 (4) (examines his governor and steam engine).
    RLH

    Biographical history of technology > Porter, Charles Talbot

  • 9 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 10 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 11 improve

    A vtr
    1 ( qualitatively) améliorer [conditions, hygiene, efficiency, appearance, diet, quality, relations] ; to improve one's German se perfectionner en allemand ; improve your memory améliorez votre mémoire ; the new arrangements did not improve matters les nouveaux accords n'ont pas arrangé les choses ; to improve one's mind se cultiver (l'esprit) ; to improve one's lot améliorer son sort ; to improve the lot of the disabled/of pensioners améliorer les conditions de vie des handicapés/des retraités ;
    2 ( quantitatively) ( increase) augmenter [wages] ; accroître [productivity, output, profits] ; to improve one's chances of winning/of getting of a job augmenter ses chances de gagner/d'obtenir un travail ;
    3 Archit, Constr aménager [building, site] ;
    4 Agric amender [soil] ; accroître [yield].
    1 ( better) [diet, efficiency, conditions] amélioré ; improved access accès facilité ; new improved formula Comm nouvelle formule améliorée ;
    2 ( increased) [offer] meilleur.
    C vi
    1 [relations, health, handwriting, weather] s'améliorer ; to improve with age [cake, wine] s'améliorer avec le temps ; the cake/wine will improve in flavour le gâteau/le vin s'améliorera ; living conditions have improved greatly over the past twenty years les conditions de vie se sont beaucoup améliorées ces vingt dernières années ; your Spanish is improving ton espagnol s'améliore ; things are improving la situation s'améliore ; he's improving Med son état s'améliore, il va mieux ;
    2 to improve on ( better) améliorer [score] ; renchérir sur [offer] ; she has improved on last year's result elle a obtenu de meilleurs résultats que l'année dernière ;
    3 ( increase) [productivity, profits] augmenter ;
    4 Agric [yield] augmenter.

    Big English-French dictionary > improve

  • 12 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 13 Savery, Thomas

    [br]
    b. c. 1650 probably Shilston, near Modbury, Devonshire, England
    d. c. 15 May 1715 London, England
    [br]
    English inventor of a partially successful steam-driven pump for raising water.
    [br]
    Little is known of the early years of Savery's life and no trace has been found that he served in the Army, so the title "Captain" is thought to refer to some mining appointment, probably in the West of England. He may have been involved in the Glorious Revolution of 1688, for later he was well known to William of Orange. From 1705 to 1714 he was Treasurer for Sick and Wounded Seamen, and in 1714 he was appointed Surveyor of the Water Works at Hampton Court, a post he held until his death the following year. He was interested in mechanical devices; amongst his early contrivances was a clock.
    He was the most prolific inventor of his day, applying for seven patents, including one in 1649, for polishing plate glass which may have been used. His idea for 1697 for propelling ships with paddle-wheels driven by a capstan was a failure, although regarded highly by the King, and was published in his first book, Navigation Improved (1698). He tried to patent a new type of floating mill in 1707, and an idea in 1710 for baking sea coal or other fuel in an oven to make it clean and pure.
    His most famous invention, however, was the one patented in 1698 "for raising water by the impellent force of fire" that Savery said would drain mines or low-lying land, raise water to supply towns or houses, and provide a source of water for turning mills through a water-wheel. Basically it consisted of a receiver which was first filled with steam and then cooled to create a vacuum by having water poured over the outside. The water to be pumped was drawn into the receiver from a lower sump, and then high-pressure steam was readmitted to force the water up a pipe to a higher level. It was demonstrated to the King and the Royal Society and achieved some success, for a few were installed in the London area and a manufactory set up at Salisbury Court in London. He published a book, The Miner's Friend, about his engine in 1702, but although he made considerable improvements, due to excessive fuel consumption and materials which could not withstand the steam pressures involved, no engines were installed in mines as Savery had hoped. His patent was extended in 1699 until 1733 so that it covered the atmospheric engine of Thomas Newcomen who was forced to join Savery and his other partners to construct this much more practical engine.
    [br]
    Principal Honours and Distinctions
    FRS 1706.
    Bibliography
    1698, Navigation Improved.
    1702, The Miner's Friend.
    Further Reading
    The entry in the Dictionary of National Biography (1897, Vol. L, London: Smith Elder \& Co.) has been partially superseded by more recent research. The Transactions of the Newcomen Society contain various papers; for example, Rhys Jenkins, 1922–3, "Savery, Newcomen and the early history of the steam engine", Vol. 3; A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Vol. 34; A.Smith, 1977–8, "Steam and the city: the committee of proprietors of the invention for raising water by fire", 1715–1735, Vol. 49; and J.S.P.Buckland, 1977–8, "Thomas Savery, his steam engine workshop of 1702", Vol. 49. Brief accounts may be found in H.W. Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press, and R.L. Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press. There is another biography in T.I. Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    RLH

    Biographical history of technology > Savery, Thomas

  • 14 High Draft

    The term "High Draft" came into prominence in 1913 with the appearance in Spain of the Casablancas mechanism for drafting in cotton spinning. This mechanism, owing to an increased and improved control over the fibres, was capable of drafts about four times higher than the normal. The new method was called " high draft " to distinguish it from the existing method which only gave usual or " low " drafts. Since 1913 many other high draft systems have been introduced, all aiming at controlling the fibres - particularly the shorter ones - as much and as adequately as possible. The utilisation of these improved methods of fibre control has other important advantages besides the saving in machinery and labour accruing from the higher drafts performed. The strength of the yarn is generally increased and its appearance improved. A good high draft system will also spin finer counts from a given cotton, or a standard quality of yarn from a lower and cheaper cotton. The adoption of the high drafting principle has been an important feature in the progress of cotton spinning machinery in recent years, and - almost without exception - new machines are now supplied by all textile machinists with high drafting on.

    Dictionary of the English textile terms > High Draft

  • 15 Edwards, Humphrey

    [br]
    fl. c.1808–25 London (?), England
    d. after 1825 France (?)
    [br]
    English co-developer of Woolf s compound steam engine.
    [br]
    When Arthur Woolf left the Griffin Brewery, London, in October 1808, he formed a partnership with Humphrey Edwards, described as a millwright at Mill Street, Lambeth, where they started an engine works to build Woolf's type of compound engine. A number of small engines were constructed and other ordinary engines modified with the addition of a high-pressure cylinder. Improvements were made in each succeeding engine, and by 1811 a standard form had been evolved. During this experimental period, engines were made with cylinders side by side as well as the more usual layout with one behind the other. The valve gear and other details were also improved. Steam pressure may have been around 40 psi (2.8 kg/cm2). In an advertisement of February 1811, the partners claimed that their engines had been brought to such a state of perfection that they consumed only half the quantity of coal required for engines on the plan of Messrs Boulton \& Watt. Woolf visited Cornwall, where he realized that more potential for his engines lay there than in London; in May 1811 the partnership was dissolved, with Woolf returning to his home county. Edwards struggled on alone in London for a while, but when he saw a more promising future for the engine in France he moved to Paris. On 25 May 1815 he obtained a French patent, a Brevet d'importation, for ten years. A report in 1817 shows that during the previous two years he had imported into France fifteen engines of different sizes which were at work in eight places in various parts of the country. He licensed a mining company in the north of France to make twenty-five engines for winding coal. In France there was always much more interest in rotative engines than pumping ones. Edwards may have formed a partnership with Goupil \& Cie, Dampierre, to build engines, but this is uncertain. He became a member of the firm Scipion, Perrier, Edwards \& Chappert, which took over the Chaillot Foundry of the Perrier Frères in Paris, and it seems that Edwards continued to build steam engines there for the rest of his life. In 1824 it was claimed that he had made about 100 engines in England and another 200 in France, but this is probably an exaggeration.
    The Woolf engine acquired its popularity in France because its compound design was more economical than the single-cylinder type. To enable it to be operated safely, Edwards first modified Woolf s cast-iron boiler in 1815 by placing two small drums over the fire, and then in 1825 replaced the cast iron with wrought iron. The modified boiler was eventually brought back to England in the 1850s as the "French" or "elephant" boiler.
    [br]
    Further Reading
    Most details about Edwards are to be found in the biographies of his partner, Arthur Woolf. For example, see T.R.Harris, 1966, Arthur Woolf, 1766–1837, The Cornish Engineer, Truro: D.Bradford Barton; Rhys Jenkins, 1932–3, "A Cornish Engineer, Arthur Woolf, 1766–1837", Transactions of the Newcomen Society 13. These use information from the originally unpublished part of J.Farey, 1971, A Treatise on the Steam Engine, Vol. II, Newton Abbot: David \& Charles.
    RLH

    Biographical history of technology > Edwards, Humphrey

  • 16 Owen, Robert

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1771 Newtown, Montgomeryshire, Wales
    d. 17 November 1858 Newtown, Montgomeryshire, Wales
    [br]
    Welsh cotton spinner and social reformer.
    [br]
    Robert Owen's father was also called Robert and was a saddler, ironmonger and postmaster of Newtown in Montgomeryshire. Robert, the younger, injured his digestion as a child by drinking some scalding hot "flummery", which affected him for the rest of his life. He developed a passion for reading and through this visited London when he was 10 years old. He started work as a pedlar for someone in Stamford and then went to a haberdasher's shop on old London Bridge in London. Although he found the work there too hard, he stayed in the same type of employment when he moved to Manchester.
    In Manchester Owen soon set up a partnership for making bonnet frames, employing forty workers, but he sold the business and bought a spinning machine. This led him in 1790 into another partnership, with James M'Connel and John Kennedy in a spinning mill, but he moved once again to become Manager of Peter Drink-water's mill. These were all involved in fine spinning, and Drinkwater employed 500 people in one of the best mills in the city. In spite of his youth, Owen claims in his autobiography (1857) that he mastered the job within six weeks and soon improved the spinning. This mill was one of the first to use Sea Island cotton from the West Indies. To have managed such an enterprise so well Owen must have had both managerial and technical ability. Through his spinning connections Owen visited Glasgow, where he met both David Dale and his daughter Anne Caroline, whom he married in 1799. It was this connection which brought him to Dale's New Lanark mills, which he persuaded Dale to sell to a Manchester consortium for £60,000. Owen took over the management of the mills on 1 January 1800. Although he had tried to carry out social reforms in the manner of working at Manchester, it was at New Lanark that Owen acquired fame for the way in which he improved both working and living conditions for the 1,500-strong workforce. He started by seeing that adequate food and groceries were available in that remote site and then built both the school and the New Institution for the Formation of Character, which opened in January 1816. To the pauper children from the Glasgow and Edinburgh slums he gave a good education, while he tried to help the rest of the workforce through activities at the Institution. The "silent monitors" hanging on the textile machines, showing the performance of their operatives, are famous, and many came to see his social experiments. Owen was soon to buy out his original partners for £84,000.
    Among his social reforms were his efforts to limit child labour in mills, resulting in the Factory Act of 1819. He attempted to establish an ideal community in the USA, to which he sailed in 1824. He was to return to his village of "Harmony" twice more, but broke his connection in 1828. The following year he finally withdrew from New Lanark, where some of his social reforms had been abandoned.
    [br]
    Bibliography
    1857, The Life of Robert Owen, Written by Himself, London.
    Further Reading
    G.D.H.Cole, 1965, Life of Robert Owen (biography).
    J.Butt (ed.), 1971, Robert Owen, Prince of Cotton Spinners, Newton Abbot; S.Pollard and J.Salt (eds), 1971, Robert Owen, Prophet of the Poor. Essays in Honour of the
    Two-Hundredth Anniversary of His Birth, London (both describe Owen's work at New Lanark).
    RLH

    Biographical history of technology > Owen, Robert

  • 17 Graham, George

    SUBJECT AREA: Horology
    [br]
    b. c.1674 Cumberland, England
    d. 16 November 1751 London, England
    [br]
    English watch-and clockmaker who invented the cylinder escapement for watches, the first successful dead-beat escapement for clocks and the mercury compensation pendulum.
    [br]
    Graham's father died soon after his birth, so he was raised by his brother. In 1688 he was apprenticed to the London clockmaker Henry Aske, and in 1695 he gained his freedom. He was employed as a journeyman by Tompion in 1696 and later married his niece. In 1711 he formed a partnership with Tompion and effectively ran the business in Tompion's declining years; he took over the business after Tompion died in 1713. In addition to his horological interests he also made scientific instruments, specializing in those for astronomical use. As a person, he was well respected and appears to have lived up to the epithet "Honest George Graham". He befriended John Harrison when he first went to London and lent him money to further his researches at a time when they might have conflicted with his own interests.
    The two common forms of escapement in use in Graham's time, the anchor escapement for clocks and the verge escapement for watches, shared the same weakness: they interfered severely with the free oscillation of the pendulum and the balance, and thus adversely affected the timekeeping. Tompion's two frictional rest escapements, the dead-beat for clocks and the horizontal for watches, had provided a partial solution by eliminating recoil (the momentary reversal of the motion of the timepiece), but they had not been successful in practice. Around 1720 Graham produced his own much improved version of the dead-beat escapement which became a standard feature of regulator clocks, at least in Britain, until its supremacy was challenged at the end of the nineteenth century by the superior accuracy of the Riefler clock. Another feature of the regulator clock owed to Graham was the mercury compensation pendulum, which he invented in 1722 and published four years later. The bob of this pendulum contained mercury, the surface of which rose or fell with changes in temperature, compensating for the concomitant variation in the length of the pendulum rod. Graham devised his mercury pendulum after he had failed to achieve compensation by means of the difference in expansion between various metals. He then turned his attention to improving Tompion's horizontal escapement, and by 1725 the cylinder escapement existed in what was virtually its final form. From the following year he fitted this escapement to all his watches, and it was also used extensively by London makers for their precision watches. It proved to be somewhat lacking in durability, but this problem was overcome later in the century by using a ruby cylinder, notably by Abraham Louis Breguet. It was revived, in a cheaper form, by the Swiss and the French in the nineteenth century and was produced in vast quantities.
    [br]
    Principal Honours and Distinctions
    FRS 1720. Master of the Clockmakers' Company 1722.
    Bibliography
    Graham contributed many papers to the Philosophical Transactions of the Royal Society, in particular "A contrivance to avoid the irregularities in a clock's motion occasion'd by the action of heat and cold upon the rod of the pendulum" (1726) 34:40–4.
    Further Reading
    Britten's Watch \& Clock Maker's Handbook Dictionary and Guide, 1978, rev. Richard Good, 16th edn, London, pp. 81, 84, 232 (for a technical description of the dead-beat and cylinder escapements and the mercury compensation pendulum).
    A.J.Turner, 1972, "The introduction of the dead-beat escapement: a new document", Antiquarian Horology 8:71.
    E.A.Battison, 1972, biography, Biographical Dictionary of Science, ed. C.C.Gillespie, Vol. V, New York, 490–2 (contains a résumé of Graham's non-horological activities).
    DV

    Biographical history of technology > Graham, George

  • 18 Howe, Elias

    [br]
    b. 9 July 1819 Spencer, Massachusetts, USA
    d. 3 October 1867 Bridgeport, Connecticut, USA
    [br]
    American inventor of one of the earliest successful sewing machines.
    [br]
    Son of Elias Howe, a farmer, he acquired his mechanical knowledge in his father's mill. He left school at 12 years of age and was apprenticed for two years in a machine shop in Lowell, Massachusetts, and later to an instrument maker, Ari Davis in Boston, Massachusetts, where his master's services were much in demand by Harvard University. Fired by a desire to invent a sewing machine, he utilized the experience gained in Lowell to devise a shuttle carrying a lower thread and a needle carrying an upper thread to make lock-stitch in straight lines. His attempts were so rewarding that he left his job and was sustained first by his father and then by a partner. By 1845 he had built a machine that worked at 250 stitches per minute, and the following year he patented an improved machine. The invention of the sewing machine had an enormous impact on the textile industry, stimulating demand for cloth because making up garments became so much quicker. The sewing machine was one of the first mass-produced consumer durables and was essentially an American invention. William Thomas, a London manufacturer of shoes, umbrellas and corsets, secured the British rights and persuaded Howe to come to England to apply it to the making of shoes. This Howe did, but he quarrelled with Thomas after less than one year. He returned to America to face with his partner, G.W.Bliss, a bigger fight over his patent (see I.M. Singer), which was being widely infringed. Not until 1854 was the case settled in his favour. This litigation threatened the very existence of the new industry, but the Great Sewing Machine Combination, the first important patent-pooling arrangement in American history, changed all this. For a fee of $5 on every domestically-sold machine and $1 on every exported one, Howe contributed to the pool his patent of 1846 for a grooved eye-pointed needle used in conjunction with a lock-stitch-forming shuttle. Howe's patent was renewed in 1861; he organized and equipped a regiment during the Civil War with the royalties. When the war ended he founded the Howe Machine Company of Bridgeport, Connecticut.
    [br]
    Further Reading
    Obituary, 1867, Engineer 24.
    Obituary, 1867, Practical Magazine 5.
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (provides a good account of Howe's life and achievements).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750, with a biography of Elias Howe, London (tells the history of sewing machines).
    F.B.Jewell, 1975, Veteran Sewing Machines, A Collector's Guide, Newton Abbot (a more modern account of the history of sewing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (covers the mechanical developments).
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (examines the role of the American sewing machine companies in the development of mass-production techniques).
    RLH

    Biographical history of technology > Howe, Elias

  • 19 padlock

    1. навесной замок

     

    навесной замок
    -

    Параллельные тексты EN-RU

    ...be provided with a means permitting it to be locked in the OFF (isolated) position (for example by padlocks).
    [IEC 60204-1-2006]

    ... иметь средства для запирания в положении ОТКЛЮЧЕНО (отделено), например, с помощью навесных замков.
    [Перевод Интент]

     


    Источник: insight-security.com
    In simple terms, a padlock has three major components; the Body, the Shackle and the Locking Mechanism, …it may also incorporate features such as a weatherproof casing, anti drill or anti cropping protection, etc.

    4668

    Discus style padlocks - have no angular corners, so are often used with cycle security chains and cables, as well as being a popular choice for securing doors on sheds and beach huts, etc. When used as a door lock, they will typically be used in conjunction with the special shrouded discus hasp and staple set, which offers extra protection to the padlock shackle.

    4669

    Shutter Locks / Anvil Locks - are typically used to secure the external (or internal) security roller shutters fitted to shop fronts. They are also popular for use with parking posts, motorcycle security chains, etc.

    4670

    Conventional Style padlocks have a wide range of applications from low security applications like locking your toolbox, to high security uses such as securing factory gates or protecting motorcycles. They are typically available as; Open, Close, or Semi Enclosed Shackle types

    4671
    Shackleless type padlock (shown with special hasp)

    Shackleless Padlocks - this is a bit of a misnomer as the padlock does of course have a shackle, it’s just that it’s on the underside of the lock body and therefore unseen. This type of padlock can be round (like the one pictured) or rectangular, but typically, they are designed to be used with a special matching security hasp. Because of their design, these units are difficult to attack and over recent years, as well as being used on warehouse doors, etc, they have also become very popular for use on vans and other vehicles where they are used to secure opening double doors.
     

    4672

    4 tumbler combintion padlock

     

    A "Close Shackle" padlock is one with built in shoulders, which are designed to minimise the amount of the shackle exposed, to a saw or bolt cropper attack. This type of padlock will normally have a higher security rating than an equivalent unit with a semi enclosed or open shackle, however subject to size and clearances, may not be practical for instance, to use where you need to secure 2 chain links together or require a padlock for use with a shrouded hasp, etc. To make them easier to use, many Close Shackle padlocks feature "removable shackles" which are fully released from the body of the padlock when it's unlocked.

     

    An "Open Shackle" padlock will typically be easier to use where the shackle needs to pass through 2 chain-links (i.e, a chain securing two opening gates together), etc. As more of the shackle is exposed however, this makes it potentially easier to attack with a saw or bolt croppers.

     

    A "Semi Enclosed Shackle" padlock is something of a compromise, but will often offer more flexibility in use than a Close Shackle padlock and improved security over an Open Shackle model.

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > padlock

  • 20 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

См. также в других словарях:

  • The Over-the-Hill Gang (American football) — The Over the Hill Gang was the George Allen coached Washington Redskins team of the early 1970s, so named due to the large number of veteran players on the team. Many of those players also played for Allen when he coached the Los Angeles Rams… …   Wikipedia

  • The Years — infobox Book | name = The Years title orig = translator = image caption = 1st edition cover author = Virginia Woolf illustrator = cover artist = Vanessa Bell country = United Kingdom language = English series = genre = Novel publisher = Hogarth… …   Wikipedia

  • The Nest (football ground) — This page is on the former stadium of Norwich City F.C.. For the ex Crystal Palace F.C. stadium of same name see Croydon Common Athletic Ground. The Nest was the former home ground of Norwich City F.C., used for 27 years between 1908 and 1935.The …   Wikipedia

  • The Clancy Brothers — and Tommy Makem The Clancy Brothers and Tommy Makem in the 1960s. Background information Origin County Tipperary County Armagh, Ireland …   Wikipedia

  • The Catholic University of America and The Knights of Columbus — The Knights of Columbus and The Catholic University of America have a history of working together that dates back almost to the founding of the university. Today, Supreme Knight Carl A. Anderson serves on the Board of CUA s Trustees. Bishop… …   Wikipedia

  • Concerns and controversies over the 2008 Summer Olympics — 2008 Summer Olympics Bid process Venues Marketing Concerns and controversies Torch relay (route) Opening ceremony (flag bearers) Medal table (medalists) Closing ceremony Event calendar …   Wikipedia

  • The Nomads — The Tien Shan Nomads are a high school basketball group that represent the Tien shan Iternational School in Almaty, Kazakhstan. This is their history:A Five Year ReviewOverviewMarch 16th, 2006. The TSEC Nomads and the AIS Snow Leopards were… …   Wikipedia

  • The Connells — Background information Origin Raleigh, North Carolina, United States Genres …   Wikipedia

  • The Peachbones — are a band based out of Ashland, Ohio.HistoryThe Early Days (1994 1997) The Peachbones formed in 1994, in Ashland, Ohio by Ron Copenhaver, Matt Hoover, and Donne Copenhaver. Matthew Hoover met Ron Copenhaver s guitar before he met Ron Copenhaver …   Wikipedia

  • The Chills — Background information Origin Dunedin, New Zealand Genres …   Wikipedia

  • The Four Pillars — is a research programme set up in 1987 by the Geneva Association, also known as the International Association for the Study of Insurance Economics. The aim of the Four Pillars research programme is to study the key importance in the new service… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»